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ABSTRACT: The occurrence of pronounced climate reversals during the last glacial termination has long been recognised in
palaeoclimate records from both hemispheres and from high to low latitudes. Accurate constraint of both the timing andmagnitude of
events, such as the Younger Dryas and Antarctic Cold Reversal, is vital in order to test different hypotheses for the causes and
propagation of abrupt climate change. However, in contrast to higher-latitude regions, well-dated records from the Tropics are rare
and the structure of late-glacial tropical climate remains uncertain. As a step toward addressing this problem, we present an in situ
cosmogenic 3He surface exposure chronology from Nevado Coropuna, southern Peru, documenting a significant fluctuation of the
ice margin during the late-glacial period. Ten tightly clustered ages from a pair of moraines located halfway between the modern
glacier and the Last Glacial Maximum terminus range from 11.9 to 13.9 ka and give an arithmetic mean age of 12.8! 0.7 ka (1s).
These data constitute direct evidence for a readvance, or prolonged stillstand, of glaciers in the arid Andes of southwestern Peru.
Copyright # 2011 John Wiley & Sons, Ltd.
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Introduction

The last glacial–interglacial transition (‘Termination 1’)
represents the most significant reorganisation of Earth’s climate
in the last 100 ka. Imposed upon the pattern of rising
global temperatures, distinct and sometimes abrupt climate
oscillations have been recognised in numerous proxy records
from sites worldwide. In the classic view of the late-glacial
period, events in the Northern Hemisphere typically are tied to
the Younger Dryas (YD: 11.6–12.9 ka), an abrupt return to near
full-glacial conditions first identified in Scandinavia (Blytt,
1876; Sernander, 1908; Mangerud et al., 1974). In a similar
sense, several recent investigations in the Southern Hemisphere
(Fogwill and Kubik, 2005; Moreno et al., 2009) have correlated
late-glacial events with the slightly earlier Antarctic Cold
Reversal (ACR: 12.9–14.5 ka). The importance of understand-
ing abrupt, suborbital climate change (Denton et al., 2005) has
prompted a substantial body of research directed towards
constraining the geographic extent of events such as the YD
(e.g. Denton and Hendy, 1994; Gosse et al., 1995; Briner et al.,
2002; Ackert et al., 2008). In the Tropics, for example, a YD
signature has been recognised in precipitation records (Schulz
et al., 1998; Hughen et al., 2000; Haug et al., 2001; Wang
et al., 2001), suggesting that cold events in the North Atlantic
region are intricately linked to changes in the distribution of
low-latitude rainfall.
Resolving the exact timing, structure and geographic extent of

late-glacial climate events is fundamental to our understanding of
the causes of abrupt climate change and poses a key problem in
palaeoclimate research (Denton et al., 2005). Nonetheless, the
response of glaciers to late-glacial climate variability remains an
unresolved and controversial issue. Glaciers are sensitive
indicators of climate change (Oerlemans, 2001; Anderson and
Mackintosh, 2006), advancing and retreating in response to small
changes in temperature and precipitation, and have the potential

to provide valuable, long-term records of climate. Our under-
standing of past glacier behaviour at tropical latitudes is limited,
however, by low spatial resolution of data and insufficient dating
resolution (Rodbell et al., 2009).
The occurrence of a late-glacial climate reversal in the

tropical Andes of South America has been debated for decades
(Mercer and Palacios, 1977; Clapperton and McEwan, 1985;
Schubert and Clapperton, 1990; Hansen, 1995; Clapperton
et al., 1997; Rodbell and Seltzer, 2000) and continues to be
contentious. In their comprehensive review of Andean glacier
records, Rodbell et al. (2009) noted that most tropical moraines
of late-glacial age are constrained either by minimum- or
maximum-bounding radiocarbon ages, and that few are dated
sufficiently to identify discrete patterns in climate behaviour.
Adding to the uncertainty, tropical moraine chronologies based
on surface exposure dating – an increasingly common practice
in the Andes – are subject to significant systematic uncertainties
at these latitudes and altitudes due to ambiguity in nuclide
production rates and scaling schemes (Farber et al., 2005; Zech
et al., 2007, 2008; Smith et al., 2008; Bromley et al., 2009),
requiring a conservative approach to interpreting cosmogenic
ages.
In their recent review of published data, Rodbell et al. (2009)

suggested that a YD-like signal occurs in various records
from the tropical Andes, a view supported by at least two
recent studies (Mahaney et al., 2007; Glasser et al., 2009).
Nonetheless, compelling evidence for this event remains
elusive (Smith et al., 2008) and indications of an advance
during the ACR in southeastern Peru (Goodman et al., 2001)
and, potentially, in northern Bolivia (Blard et al., 2009)
emphasise that the pattern of late-glacial climate behaviour in
the tropical Andes is far from resolved (Rodbell et al., 2009).
This uncertainty represents a significant shortcoming of our
knowledge both of millennial and submillennial climatic
variability in the Tropics, and of the global extent of abrupt
climate change events.
As an important step toward addressing this problem, we

present 10 cosmogenic 3He surface exposure ages from late-
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glacial moraines on Nevado Coropuna in southwestern Peru.
The moraines are located midway between the modern glacier
terminus and moraines dated to the Last Glacial Maximum
(LGM; Bromley et al., 2009). We calculated these ages using
currently accepted scaling protocols (Balco et al., 2008) and a
compilation of global 3He production rates (Goehring et al.,
2010).

Geological and climatic overview

Nevado Coropuna (6426m; 158 330 S, 728 930 W), located
150 km northwest of Arequipa (Fig. 1), is both the highest peak
in the Cordillera Ampato and the highest volcano in Peru. The
mountain comprises four andesite domes separated by broad
saddles and rises "2000m above the surrounding puna on all
but the south side. Here, incision of the underlying ignimbrite
by the Rio Llacllaja, a tributary of the Colca Canyon, has
resulted in relief of more than 3500m. Although andesitic
eruptions at Coropuna began during the late Miocene,
the mountain’s present structure is attributed to prolonged
Quaternary volcanism (Venturelli et al., 1978; Weibel et al.,
1978). The most recent activity produced three large
andesite flows on the west, north and south flanks (Fig. 2).
Although these flows have not been dated directly, they overlie
deposits of known late-glacial age (Bromley et al., 2009; this
study) and, in turn, have been eroded by subsequent glacial
activity.
The persistent inversion over the Pacific coast and strong

Andean rain shadow effect combine to maintain a semi-arid
climate at Coropuna. Most precipitation ("390mm water
equivalent a#1 at 6080m; Herreros et al., 2009) arrives during
the brief summer wet season (December–March). Coropuna
currently supports an ice cap ("60 km2; Racoviteanu et al.,
2007) drained by 15 outlet glaciers, as well as extensive
perennial snow. Due to aridity, glaciers are restricted to
elevations significantly higher (5100–5500m) than the
local zero-degree isotherm ("4900m; Dornbusch, 1998) and
ablation occurs both by melting and sublimation. Today,
meltwater streams are rare and flow only during clear
conditions. The largest drains the ice cap via the north-flowing
valley of Quebrada Ullullo (Fig. 2). Glaciofluvial features
associated with Late Pleistocene moraines indicate the
presence of former melting margins.

Glacial–geological overview

Abundant, well-preserved glacial deposits on the slopes
of Coropuna correspond to periods when ice was more
extensive than today. Dornbusch (2002) describedmoraines on

the mountain’s west flank as corresponding to a single, undated
event. This record was expanded by Bromley et al. (2009)
to include evidence both for older and younger events
registered in several locations on Coropuna. In addition,
Bromley et al. (2009) presented a preliminary cosmogenic
3He surface exposure moraine chronology and demonstrated
the suitability of the 3He method for use in the tropical Andes.
The most striking glacial landforms on Coropuna include large
lateral moraines, some asmuch as 100m in relief and 8 km long
(Fig. 3), radiating out from the mountain. Bromley et al. (2009)
attributed these moraines (C-I) to the LGM, between ca. 21 and
25 ka. Beyond the LGM limit, moraines and drift corresponding
to at least two earlier advances are preserved on the plateau
north and east of Coropuna (Fig. 3).

On all sides of Coropuna, a prominent set of bouldery
moraines (C-II) occurs midway between the LGM termini and
the modern ice margin and corresponds to a readvance, or
prolonged stillstand, of glaciers during deglaciation (Bromley
et al., 2009). The best-preserved C-II deposits are located in the
north-facing Quebrada Santiago (Figs 2 and 3) and are the focus
of this study. Bromley et al. (2009) provided four preliminary
cosmogenic 3He ages from this complex and suggested it was
deposited during the late-glacial period.

Sampling and analysis methods

The geomorphic mapping of C-II moraines in Quebrada
Santiago forms the basis of this study and is described in detail
by Bromley et al. (2009). To obtain a 3He surface exposure
chronology, we sampled the tops of andesite boulders (0.5–3m
high) located on lateral- and end-moraine crests (Fig. 4). We
collected the upper few centimetres ($5 cm) of rock beneath
boulder surfaces. Boulder surfaces typically exhibit glacial
polish and striae, indicating that post-depositional granular
erosion and spallation have been negligible. The size of
the samples and the arid conditions at Coropuna minimise
shielding effects due to snow or vegetation. We acknowledge
the possibility of post-depositional exhumation of boulders,
due to erosion or deflation of moraines, but suggest that this
process has been minimal on Coropuna due to aridity and the
bouldery, sharp-crested nature of the C-II moraines.

We measured helium concentrations in small (125–250mm
diameter) clinopyroxene (augite) minerals. Rock samples were
first crushed and sieved to retrieve the 125–250mm size
fraction. Using heavy liquids, magnetic separation and hand-
picking, we then separated the pyroxenes. Gases from the
pyroxene separates were released by total extraction at"1300–
14008C for 15min, during which time the furnace was
kept exposed to a liquid nitrogen-cooled charcoal trap for
gas purification.We purified the gases further by exposing them
to an SAES getter at room temperature. Residual gas was
collected on a cryogenically cooled trap held at "13K and
helium then was separated from neon by heating the trap to
45K. Abundance and isotopic analyses were performedwith an
MAP 215-50 noble gas mass spectrometer calibrated with a
known volume of a Yellowstone helium standard (MM)
with a 3He/4He ratio of 16.45Ra, where Ra¼ (3He/4He)air¼
1.384& 10#6. Mass spectrometry measurements were con-
ducted at Lamont-Doherty Earth Observatory following the
protocol of Winckler et al. (2005). 3He/4He ratios of the
investigated rocks are extremely high, ranging from 9 to
19 times the atmospheric ratio (Table 2). Therefore, we do not
correct our dataset for non-cosmogenic (e.g. magmatic) 3He as
such corrections would be less than 1%.

We present the 3He ages calculated using globally derived
production rates for 3He (Goehring et al., 2010) and the Lm

Figure 1. Map of Peru showing locations of Nevado Coropuna (NC)
and the Cordillera Blanca (CB).
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(Lal, 1991/Stone, 2000/Nishiizumi et al., 1989) and Li (Lifton
et al., 2005) scaling models (Balco et al., 2008, as modified
by Goehring et al., 2010: see Bromley et al., 2009, for a
detailed description of our calculation methodology). Our
interpretations and discussion are based on the results of the
time-dependent Lm scaling, because it is used widely
and incorporates geomagnetic variability at low latitudes.
Furthermore, 10Be production rate calibration studies from both
Peru (Farber et al., 2005) and New Zealand (Putnam et al.,
2010) have shown that at test sites the Lm scaling gives the
closest match to available radiocarbon constraints (N. Lifton,
pers. comm., 2009). We also include here four ages reported
by us previously (NC17–20: Bromley et al., 2009), now
recalculated to be consistent with out new data.

Results

C-II deposits preserved in Quebrada Santiago form a
closely spaced pair of right-lateral moraines descending to a
pair of terminal moraines at "5000m. The paired moraines
merge to form a single left-lateral moraine (Figs 3 and 5). The
length ("1.25 km in Q. Santiago, 2.9 km in Q. Ullullo), large
size, and continuous nature of the lateral moraines suggest that
these deposits represent an advance of ice, as opposed to a
pause in recession. Moreover, the steep distal slopes of C-II
moraines are indicative of deposition along a robust, steep
ice margin, a configuration typical of advancing glaciers. By
contrast, recessional landforms on Coropuna typically form

short, low-relief sections of end moraines with gentle
distal slopes and little or no continuity up-valley. Nonetheless,
although the morphology of the C-II moraines is strongly
indicative of deposition at the margins of advancing glaciers,
we acknowledge the possibility that the moraines instead
represent a prolonged stillstand during post-LGM deglaciation.
The C-II moraines are prominent, bouldery ridges of 5–10m

relief that exhibit well-defined crests 1–5m in width. An
exception occurs where the left-lateral moraine crosses a
bedrock escarpment, becoming instead a thin, bouldery drift
unit with a well-defined edge (Figs 3 and 5). This drift
edge extends upslope for "350m before merging with the
continuation of the left-lateral moraine Figs 3 and 5). Moraines
with similar morphology, relative position and weathering
occur in neighbouring valleys (Fig. 2) and elsewhere on the
mountain (Bromley et al., 2009).
Altogether, there are 12 cosmogenic 3He ages from the C-II

deposits in Quebrada Santiago. Four samples (NC17–20:
Bromley et al., 2009) were from the prominent drift edge,
described above. We collected an additional six samples from
the moraine complex itself: one (NC33) from the outer end
moraine, four (NC32, 34–36) from the inner end moraine, one
(NC37) from the left-lateral moraine below the drift edge and
two (NC38, 39) from the left-lateral moraine upslope of the
drift edge (Fig. 5). Sample and helium data are given in Tables 1
and 2 and surface exposure ages in Table 3. Together,
3He surface exposure ages from the C-II moraines range from
11.9! 0.5 to 13.9! 0.3 ka (Fig. 5; Table 3), with an arithmetic

Figure 2. Map of Coropuna showing Quebradas Santiago (QS) and
Ullullo (QU), postglacial lava flows (black) and glacial limits: black
lines, LGM moraines; red lines late glacial moraines.

Figure 3. Geomorphic map of Quebrada
Santiago area. Dashed line indicates the area
shown in Fig. 5.

Figure 4. Sampling boulder (NC34) on C-II moraine crest,
Quebrada Santiago.
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mean age of 12.8! 0.7 ka (1s). Plotted as a probability
curve, the C-II ages exhibit a slightly bimodal distribution
(Fig. 6), with a principal peak age of 13.4 ka and a secondary
peak age of 12.4 ka. We exclude samples NC20 and 35 as
young and old outliers, respectively, both being more than 2s
beyond the mean.

Discussion

The moraine record from Quebrada Santiago indicates that
post-LGM retreat was interrupted by a glacier advance or
stillstand, during which the C-II moraines were deposited.
At this time, the glacier terminus was located approximately
mid-distance between the modern ice edge and the LGM limit
(Fig. 7), suggesting that a significant portion of deglaciation
already had taken place. The dearth of retreat moraines or
downwasting deposits up-valley of the C-II limits, both in
Quebrada Santiago and in other valleys on Coropuna, indicates
that subsequent recession largely was inactive or was too rapid
for moraine formation. Thus the C-II deposits represent a unique
event between the LGM and the presumed late Holocene
moraines.

Regardless of scaling scheme, the 10 ages from C-II moraines
in Quebrada Santiago exhibit a high degree of internal
consistency. With Lm scaling, these data constrain the event
unequivocally to the late-glacial period. With Li scaling the age
range becomes significantly younger at 9.5–10.9 ka and would
suggest an early Holocene age for the advance. We consider
this unlikely, however, given both substantial evidence for full
interglacial conditions in the tropical Andes by the early
Holocene (e.g. Thompson et al., 1995, 1998; Seltzer et al.,
2002; Ramirez et al., 2003; Bush et al., 2005) and the
absence of known events in the early Holocene that might
have caused glaciers to advance to half their LGM extent.
Therefore, we reiterate that we base our interpretations on the
Lm dataset.

Figure 5. Close-upmap of Quebrada Santiago showing distribution of
C-II moraines and 3He ages.

Table 1. Sample data and helium concentrations for C-II moraines.

Sample no. Lat. S Long. W Altitude (m) Type Thickness (cm) Shielding 3Hecos (atoms g#1) 1s

NC17' #15.511 #72.5860 5082 Cobble 6.3 0.967 1.862& 107 4.351&105

NC18' #15.5112 #72.5862 5087 Cobble 7 0.997 1.977& 107 4.229&105

NC19' #15.5114 #72.5862 5087 Cobble 6 0.983 1.924& 107 5.464&105

NC20' #15.5116 #72.5861 5089 Cobble 6 0.997 1.493& 107 3.589&105

NC32 #15.5089 #72.5799 5034 Boulder 3 0.997 2.031& 107 4.92& 105

NC33 #15.511 #72.5782 5063 Boulder 5 0.993 1.767& 107 9.619&105

NC34 #15.5102 #72.5786 5052 Boulder 1.5 0.995 1.85&107 7.368&105

NC35 #15.0994 #72.5786 5052 Boulder 1.6 0.995 2.254& 107 1.293&106

NC36 #15.5096 #72.5855 5053 Boulder 3.25 0.998 1.818& 107 6.873&105

NC37 #15.5105 #72.5861 5066 Boulder 3.1 0.982 1.821& 107 6.886&105

NC38 #15.5115 #72.5862 5095 Boulder 5 0.997 1.939& 107 6.597&105

NC39 #15.5139 #72.5869 5130 Boulder 2 0.998 1.832& 107 8.336&105

Density (all samples)¼2.7 g cm#3; erosion (all samples)¼0mm a#1. 'Samples of Bromley et al. (2009), recalculated here according to Balco et al.
(2008), with the modification of Goehring et al. (2010).

Table 2. Helium isotope data for all C-II samples. 3He/4He ratios are given as measured and relative to the atmospheric 3He/4He value.

Sample no. 3He/4He 3He/4He (R/Ra) 1s 4He (atoms g#1) 1s 3He (atoms g#1) 1s

NC17' 1.571& 10#5 11 4.729&10#7 1.185&1012 2.232&1010 1.862&107 4.351&105

NC18' 1.738& 10#5 13 4.782&10#7 1.138&1012 1.952 x 1010 1.977&107 4.229&105

NC19' 1.845& 10#5 13 6.204&10#7 1.043&1012 1.864&1010 1.924&107 5.464&105

NC20' 1.343& 10#5 10 3.978&10#7 1.112&1012 1.911&1010 1.493&107 3.589&105

NC32 1.538& 10#5 11 3.415&10#7 1.433&1011 1.387&109 2.031&107 4.92&105

NC33 1.243& 10#5 9 6.595&10#7 1.434&1011 1.749&109 1.767&107 9.619&105

NC34 2.234& 10#5 16 8.372&10#7 9.04&1010 1.22& 109 1.85& 107 7.368&105

NC35 2.611& 10#5 19 1.428&10#6 8.855&1010 1.542&109 2.254&107 1.293&106

NC36 1.856& 10#5 13 6.777&10#7 1.371&1011 1.344&109 1.818&107 6.873&105

NC37 2.004& 10#5 14 6.905&10#7 1.044&1011 1.628&109 1.821&107 6.886&105

NC38 1.98&10#5 14 6.08& 10#7 9.765&1010 1.428&109 1.939&107 6.597&105

NC39 2.353& 10#5 17 1.017&10#6 8.29&1010 1.18& 109 1.832&107 8.336&105

Ra¼ 1.384& 10#6. 'See Table 1 footnote.
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The C-II ages range from 11.9 to 13.9 ka and exhibit
two peaks of similar size at 12.7 and 13.4 ka (Fig. 6). It is
possible that this bimodal distribution represents two distinct
age populations and therefore that the moraines correspond
to two closely spaced yet separate advances of similar extent.
However, considering the moraine morphology and sample
distribution (Fig. 5), we do not yet have strong physical
evidence for this scenario.
Our dataset adds to a growing body of multiproxy evidence

for late-glacial climate variability in the tropical Andes.
For example, pollen records from Venezuela (Schubert and
Clapperton, 1990), Colombia (Kuhry et al., 1993; Van de
Hammen and Hooghiemstra, 1995), Ecuador (Hansen, 1995)
and Peru (Hansen, 1995) all indicate that post-LGM warming
in the Tropics was interrupted by fluctuations in temperature
and/or precipitation. Similarly, compelling evidence for
pronounced late-glacial cold reversals is provided by the
d18O ice core records from Nevados Huascarán, Peru
(Thompson et al., 1995), and Sajama, Bolivia (Thompson
et al., 1998), although the exact nature and timing of these
events have yet to be established (Thompson et al., 2000).
Preliminary data from the new Coropuna ice core suggest
that a similar reversal also is recorded at that site (Buffen,
2008).

In addition to pollen and ice core records, late-glacial
climate variability in the Tropics is documented by numerous
moraine chronologies (Rodbell et al., 2009, and references
therein). Clear glacial–geomorphological evidence for post-
LGM advances comes from Ecuador (e.g. Clapperton and
McEwan, 1985; Clapperton et al., 1997), Venezuela (Mahaney
et al., 2007) and Peru (e.g. Mercer and Palacios, 1977; Wright,
1984; Rodbell and Seltzer, 2000; Bromley et al., 2009).
With the development of surface exposure dating, our ability
to resolve the timing of these events has increased greatly and
glacier chronologies documenting late-glacial fluctuations now
exist for several tropical Andean sites (Farber et al., 2005; Smith
et al., 2005, 2008; Zech et al., 2006, 2007; Blard et al., 2009;
Bromley et al., 2009; Glasser et al., 2009).
Collectively, these chronologies are in broad agreement.

Regardless of method or scaling scheme, each record
shows that the last glacial–interglacial transition was not
smooth but was interrupted by glacier advances or stillstands.
In this general sense, the tropical climate shares a high
degree of similarity with higher latitudes, where late-glacial
climate reversals are well documented. However, detailed
comparison of the tropical moraine dataset reveals substantial
variability among sites. For example, whereas some studies
have correlated late-glacial advances with the YD (e.g.
Clapperton et al., 1997; Mahaney et al., 2007; Glasser et al.,
2009), other records document advances that pre-dated the
YD (Mercer and Palacios, 1977; Rodbell and Seltzer, 2000;
Goodman et al., 2001; Smith et al., 2005; Blard et al., 2009).
Accepting that some of this discrepancy might be the result of
methodological differences, the question remains as to what
extent late-glacial climate fluctuations in the Tropics were
linked to one another and to higher-latitude events.
In addressing this question, it is essential that the nature

as well as the timing of late-glacial ice fluctuations be
established. For example, when compared on the basis of
age alone, the late-glacial record from Coropuna bears a
striking similarity to that of Quebrada Uquian in the Cordillera
Blanca (Fig. 1), site of the ‘Breque’ moraine (Rodbell and
Seltzer, 2000). Specifically, the age range for the C-II moraines
(11.9–13.9 ka) is in close agreement with the age of the Breque
moraine, constrained by radiocarbon ages to 12.9–13.2 ka
(Rodbell and Seltzer, 2000) and with 10Be surface exposure
dating to 10.4–13.2 ka (Farber et al., 2005). While it is tempting

Figure 6. Probability curve of C-II ages. Mean age is given to 1s
uncertainty.

Figure 7. Age–distance diagram depicting former ice front positions
in Quebrada Santiago relative to today. Constraint of the LGM (C-I)
event is based on ages from Bromley et al. (2009). The late-glacial (C-II)
advance is constrained by ages given in this study. Although no
ages exist for late Holocene moraines, for the purpose of this diagram
we assign them a 19th-century age, consistent with the last major
advance documented elsewhere in the Peruvian Andes (Kaser, 1999;
Solomina et al., 2007; Licciardi et al., 2009). Dashed lines indicate
inferred glacier extent.

Table 3. C-II surface exposure ages calculated according to the Lm
(time-dependent) and Li scaling schemes of Balco et al. (2008).

Sample no. Lm (ka) Li (ka)

Production rate (atoms g#1 a#1) 120!9.4 136!4.1
NC17' 12.8!0.3 10.2!0.2
NC18' 13.6!0.3 10.9!0.2
NC19' 13.2!0.4 10.5!0.3
NC20' 10.2!0.2y 8.0!0.2y

NC32 13.9!0.3 11.1!0.3
NC33 11.9!0.7 9.5!0.5
NC34 12.4!0.5 9.9!0.4
NC35 15.0!0.9y 12.2!0.7y

NC36 12.4!0.5 9.9!0.4
NC37 12.5!0.5 10.0!0.4
NC38 13.3!0.5 10.6!0.4
NC39 11.9!05 9.5!0.4
Age range 11.9 – 13.9 9.5 – 11.1
Mean age 12.8!0.7 10.2!0.5

' See Table 1 footnote. yDaggers denote outliers.
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to infer from this concurrence that the Breque event was
regional in extent, there are important differences in moraine
stratigraphy and sample distribution between Coropuna and
the Cordillera Blanca site.
First, as documented by Rodbell (1991, 1993), the

Breque moraine is one of four prominent landforms (termed
‘Manachaque’ moraines) spread over a distance of "4.5 km
and classed as late-glacial in age. In contrast, the C-II landforms
on Coropuna form discrete units of single or closely paired
moraines located midway between the LGM and modern ice
limits. Such morphological differences between Coropuna and
Quebrada Uquian reflect their different climate histories,
and highlight the possibility that glaciers in the tropical
Andes responded to local as well as global forcing during the
late-glacial period (Rodbell et al., 2009). Second, of the
four Manachaque moraines, only the Breque moraine (the
second youngest Manachaque limit) was dated (Rodbell and
Seltzer, 2000; Farber et al., 2005), whereas the C-II dataset
presented here comprises 3He ages from both the inner and
outer moraines. Together, these considerations demonstrate
that regional correlations based solely on chronological
parallels, without consideration of morphology, may be
inaccurate.
The late-glacial 3He dataset from Coropuna spans much of

the YD and ACR. In the face of present systematic uncertainties
associated with surface exposure dating in tropical latitudes,
however, we warn that correlation of the C-II advance with
either the YD or ACR would be premature. Only minor
adjustment of production rate or scaling protocol could shift
the C-II chronology to be slightly younger or older than
presented here. Considering the overlapping nature of the YD
and ACR, this uncertainty highlights the methodological
refinement needed before surface exposure dating can verify
millennial- and submillennial-scale patterns in tropical glacier
behaviour. Recent studies (e.g. Kelly et al., 2007) increase
optimism that such verification and improvement of cosmo-
genic nuclide production rates and international scaling
models, at least at high elevations in the tropics, will be
achieved soon.

Conclusions

Our C-II moraine chronology from Coropuna affords robust
and directly dated evidence for an important climate event in
the southern Peruvian Andes ca. 12–14 ka ago, during which
glaciers occupied positions approximately half as extensive
as during the LGM. The Coropuna 3He dataset therefore
represents an important contribution to a growing body of
evidence for climate reversals during the late-glacial period in
the Tropics. In addition, excellent agreement between mean
and peak ages from a tightly clustered age distribution
demonstrates that cosmogenic 3He chronologies can be as
internally consistent and precise as 10Be datasets.
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